限制你眼界的不是算法,而是你和煦

日期:2019-10-04编辑作者:娱乐

现代人已经习惯通过社交网站来获取各类新闻信息。与传统媒体“你给什么我看什么”的信息获取方式不同,网络媒体为用户提供了更大的自由度,让他们可以选择自己想看的内容。由于网络信息的过载和多样,很多社交媒体也都采用了各种各样的算法来为用户推送更加个性化的新闻,让新闻更加符合每个人的口味。例如,Facebook就采取特定算法来决定用户的信息源(News Feed)里各种信息的排列顺序。

来源|方可成的新闻实验室

然而,很多学者担忧过度个性化的推荐会引起“回声室效应”(echo chamber):根据算法的推荐,人们逐渐接收到的都是和自己意见相似的新闻与朋友分享的信息,持不同观点的人也逐渐形成愈发封闭的小圈子。埃利·帕雷瑟(Eli Pariser) 在《过滤泡沫》 (Filter Bubble)一书中也表达了类似的忧虑:“这些个性化算法使得只有和人们的意识形态一致的信息才会被呈现,人们的视野越来越窄,可以接触到多元化信息的机会也越来越少。”对于持不同政治观点的人们来说,这样的“过滤泡沫”会让人们越来越坚持自己的政治理念,拉大不同意识形态人群之间的差距,造成社会上政治观点的两极分化和矛盾。

使用社交媒体以及带有算法推荐功能的资讯类APP,是否会导致我们只看得到自己感兴趣的、认同的内容,进而让大家都活在自己的小世界里,彼此之间难以认同和沟通?从几年前开始,就有不少人担心这种负面后果。

社交媒体的算法究竟是否限制了人们接收信息的多样性,为人们“屏蔽”了异己观点?最近,来自Facebook数据科学团队的研究者在《科学》(Science)上发表的一项研究发现,尽管Facebook的排名算法导致了一定程度的“过滤泡沫”,但人们对信息的选择更加制约了他们接受对立政治观点的可能性[1]

这种担心在2016年左右到达高峰。Facebook创始人扎克伯格在回顾2016年的时候,就将“我们能见到的观点是否足够多元”和“信息是否真实”列为两大主要的挑战——也就是说,这个问题的严重性是和假新闻相仿的。比尔·盖茨也在2017年初接受采访时表示:科技让你和观点相似的人聚在一起,让你看不到不一样的观点,“这个问题比我以及其他很多人预料的都要严重。”

“硬”内容的政治偏向

研究者将与国内新闻、政治和世界局势有关的内容定义为“硬”内容(“hard” content),而将与娱乐、体育和旅游相关的内容定义为“软”内容(“soft” content)。他们发现,大部分的硬新闻都具有明显的倾向保守主义或自由主义的趋势。通过对硬内容进行分析,研究者就可以确定分享这些新闻的用户的政治倾向。

在Facebook上,信息的流动是由人们的社交关系网决定的,朋友的政治观点很多时候也能够影响人们的观念。和很多政治博客不同,虽然在Facebook上也存在根据政治倾向抱团的现象,但朋友间仍存在意识形态上的差异。平均来说,每个Facebook用户的好友中,有23%的人和自己的政治意识形态相反。而人们接触到的他们朋友分享的信息中,平均有29.5%的信息来自于意识形态对立的一方。

近几年来,学术界也投入了大量的资源研究这一问题,传播学、计算机科学、经济学等学科都有学者在研究相关课题。由于学术出版流程较慢,从2016年左右开始的研究,直到2018年才逐渐大规模发表。

排序算法有影响,个人选择更重要

研究者最为感兴趣的是,Facebook的新闻源排序算法会如何影响人们接触对立观点。经过算法排序后,人们的确更少接收到来自对立面的信息:平均有28.5%来自于意识形态相反的一方。

不过,人们对文章链接的个人选择对他们接触不同意识形态信息的影响更大。总的来说,人们点击的信息中只有24.9%的来自于对意识形态对立的一方。

从心理学角度来说,这种情况属于“自我验证偏好”(confirmation bias)。它使得人们有一种根据自己已有观点来接受和解释信息的倾向,这种倾向导致人们常固守于已有的观点。为了验证自己已有的观点,人们往往依赖于支持性的证据,并只搜索、解释和回忆与自己信念或假设一致的信息。上面研究中发现的人们只点击与自己政治立场一致的信息就是“自我验证偏好”的最好例子。

这个研究表明,人们对信息的自我选择和自我验证,可能比个性化算法更加危险。从另一个角度来说,这项研究也证明现代信息技术对人们观点的影响并没有先前人们设想的那么悲观。算法并非“过滤泡沫”的罪魁祸首,人们的自我验证偏好才是人们接触异己信息的最大障碍。但这项研究也提示我们,想要为人们提供更平衡全面的新闻信息,开发与社会信息有关的算法仍任重道远。

编者按:该研究发表后,一些反对者认为,这一研究实际是一个彩世界,“这不是我们的错”(“it's not our fault”)类型的研究,是Facebook在为自己“洗白”。有研究者指出,将算法对内容的筛选与用户自己对内容的筛选相比较,就像是“询问菜单上新添的炸薯条含有多少反式脂肪酸,然后被告知老早就售卖的汉堡中也有反式脂肪酸”,而对于研究的解读应该落在社交网络的算法是否会加剧人们的偏见上。2014年6月,Facebook发表在PNAS上的一项情绪研究也曾引起广泛争议。在这项研究中,Facebook在用户不知情的状况下,调整了他们动态消息上来自好友的帖子,以测试正面或负面信息的情绪传染力。

参考文献:

  1. Exposure to ideologically diverse news and opinion on Facebook Eytan Bakshy, Solomon Messing, and Lada Adamic Science aaa1160 Published online 7 May 2015 [DOI:10.1126/science.aaa1160]

出人意料的是,大部分学术研究的结果都没有支持“社交媒体和算法推荐导致视野变窄”这样一种简单的结论,而是展现出了更加复杂的图景。

文章题图:oldschoolvalue.com

彩世界 1

概念:“信息茧房”是一个很少被使用的说法

在中文世界里,很多人使用“信息茧房”这一概念来描述社交媒体和算法推荐带来的视野变窄问题。虽然这一概念最初来自西方(翻译自“information cocoon”),但英文学术界其实很少使用这一概念。在谷歌学术搜索“information cocoon”,得到的大多数结果是中文期刊论文的英文摘要。

那么,欧美的研究者们用什么概念来描述这一问题?最常见的是“信息回音室(echo chamber)”,有时被使用的还有“过滤气泡(filter bubble)”。

为什么这两个概念比“信息茧房”要更加适合?首先,“回音室”突出的是“人们听到和自己类似的声音”,也就是所谓“回音”,而“茧房”则只营造了“束缚”的感觉,难以传达“意见同质性”这一特质。其次,“过滤气泡”强调的是社交媒体上的人际关系以及算法推荐功能带来的信息过滤效果,而“茧房”同样不能表达这种含义。

因此,在本文的讨论中,我们也采用“信息回音室”这一概念,而不使用在英文世界中并不流行的所谓“信息茧房”。

我系统性地阅读了近年来发表在一流学术期刊上的针对“信息回音室”和“过滤气泡”效应的学术研究,发现大部分研究都显示:使用社交媒体和算法推荐app的人,并没有明显出现视野变窄的现象,大多数人阅读的内容依然有相当的多样性。我将主要的相关论文列在了文末的参考文献中。

为什么社交媒体和算法推荐并没有导致“信息回音室”现象?从这些论文中,我们大致能总结出几个方面的因素。

因素1:算法是有不同类型的

当人们在讨论“算法导致信息回音室”的时候,往往是将“算法”视作一种单一的、同质性的存在,似乎普天下只有一种算法。实际上,算法有着多种类型,并且在不断的调整、变化中。

明尼苏达大学计算机系的几位研究者,做出了第一篇针对算法推荐系统在用户层面的“过滤气泡”效应的实证研究。他们使用的是来自电影评分和推荐网站MovieLens的数据。这个网站有点像我们熟悉的豆瓣网,不过只有电影内容。从1997年上线以来,这个网站已经运行了二十余年,用户数超过二十万。

注册使用该网站、对自己看过的电影进行一些评分之后,网站会向你展示“Top Picks For You”,也就是根据算法向你首选推荐的电影,类似于豆瓣的“猜你喜欢”。

这里的重点是:MovieLens所使用的算法叫做item-item collaborative filtering 算法,也就是“基于物品的协同过滤算法”。

“协同过滤算法”的基本思路是:计算兴趣爱好的相似程度,把东西推荐给“臭味相投”的人。常见的协同过滤算法有两种,一种是基于用户的(user-based),也即计算用户之间的相似性,如果A和B的兴趣相近,那么A喜欢的电影,B也很有可能喜欢。另一种是基于物品的(item-based),也即计算物品之间的相似性,如果电影C和电影D很相似,那么喜欢电影C的人,可能也会喜欢电影D。

彩世界 2

协同过滤算法图示:左边是基于用户的算法,右边是基于物品的算法

基于物品的协同过滤算法被广泛使用于各类推荐系统中,包括亚马逊的商品推荐系统。今日头条的算法中也有一个主要部份是协同过滤。

也正因为被广泛使用,因此这篇论文的研究者认为,他们的研究结果可以推广到电影推荐之外的其他算法推荐系统中。

研究者们选取了21个月的数据。他们将用户分为两组,一组是根据算法推荐选择电影观看的,叫做“跟随组”;另一组是不理会算法推荐的电影,叫做“不理会组”。他们发现:算法向“跟随组”推荐的电影,一直要比向“不理会组”推荐的电影更加多元化。也就是说,根据算法的推荐选择电影,然后进行打分,其实会让算法更好地学习到你的喜好,并且给你推荐更多样的片子;而如果不根据算法的推荐来看电影和打分,反而会让算法给你推荐更窄的片子。看起来,这种协同过滤算法其实能够帮助用户打开视野,探索更多样的内容。

以上计算的是算法展示的电影,那么,用户们实际上消费的电影是不是真的变得窄化了呢?分析显示:是的,大家看的电影多样性下降了。不过,令人吃惊的是:“跟随组”的下降幅度其实不大(从26.67到26.3),而“不理会组”的多样性下降却比较大(从26.59到25.86)。也就是说,在不使用算法推荐的情况下,用户的视野反而变窄得更快。

研究者指出:基于内容的推荐算法可能会比较严重地窄化用户的视野,但协同过滤算法则不会,因为它依据的不是你之前看了什么,而是和你相似的其他人喜欢什么,这有助于向你推荐你自己本不会接触到的更多样内容。

因素2:我们的社会关系是复杂的

在大多数使用了算法推荐的平台上,也都融入了社交关系的元素。例如,Facebook的信息流(news feed),虽然是基于算法排序的,但同时也是被社交关系决定的——算法决定的是信息呈现的次序,但并不能决定有哪些信息会被排序,因为那取决于你有哪些好友,关注了哪些专页(page,一个专页类似于一个微信公号)。今日头条等资讯类APP也是一样,你可以在上面关注人和号,然后你关注的人阅读和分享的内容进一步影响你能读到的内容。

2018年发表于学术期刊《Digital Journalism》的一篇论文,研究了Facebook用户们是否生存在信息回音室之中。两位研究者获取了1000名丹麦Facebook用户在14天内的时间线数据。

研究者们通过两种方式来测量用户是否处在信息回音室之中。第一种方式,是看大家在Facebook上分享的外部链接(比如一则指向媒体网站的新闻报道)有多相似,如果一群人分享的链接基本一致,就可以认为他们都生活在同一个回音室之中。数据分析发现:以分享的外部链接来测量的话,只有少于10%的参与者可以被认为处在回音室或者过滤气泡之中。

第二种方式,是看大家在Facebook上撰写发布的内容是否相似。研究者们使用了计算机自动分析文本主题模型的方法,计算每位用户发布内容的相似性。分析结果显示,以这种方式计算的话,少于27.8%的用户生活在Facebook的回音室或过滤气泡中。

这两个数字都大大低于预期,说明算法排序的社交媒体平台上并不存在很严重的回音室现象。但这篇论文更有意思的发现是:要预测一个用户是否生活在回音室之中,最佳的指标是用户个人的“社会性”。具体来说,如果一个用户的好友数越少,关注的专页越少,加入的群组越少,那么他就越有可能身处回音室之中。反之,一个广结好友、关注了大量专页的用户,生活在回音室之中的机率是很小的。

彩世界 3

本文由彩世界发布于娱乐,转载请注明出处:限制你眼界的不是算法,而是你和煦

关键词:

吸血鬼被老子上身,范海辛被黑成川普

如果说要给中国的电影观众分类,小猩可能会粗略分为: 《精灵旅社》系列一脉相承的中国式家庭主题,和多元融合...

详细>>

怪物抖腿联盟,这一次连“克总”都被你们吵醒

不吓人的怪物们,沉溺于freestyle无法自拔 今天终于赶在下映前去看了《精灵旅社3疯狂假期》。这部电影是《精灵旅社...

详细>>

海洋馆里的海豚“压力”大

摘要: 据英帝国广播公司报纸发表,米利坚马里兰海洋世界发言人说,该游乐园喂养的杀人鲸恐怕是因为面前遇报到并...

详细>>

Linux入门:计算机组件介绍

贾岳杭老师的工作室在北京CBD核心区的一座商住公寓中,两面是玻璃幕墙,视野很开阔,在初春的下午,阳光从西边...

详细>>